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The appropriate use of multiple comparison correc-
tions is an issue that is important and almost con-
tinually discussed across medicine.1 We ask, first, 

why is correcting for multiple comparisons an important 
issue? To answer this, it is necessary to review the mean-
ing of significance thresholds (α) and P values in relation 
to hypothesis testing. Researchers publishing in medical 
journals commonly set the significance threshold for their 
analyses at 5%. This metric is based on the probability of 
incorrectly rejecting the null hypothesis, also known as 
type 1 error (false positive). For a single statistical test, 
if P < 0.05, the null is rejected. For example, a researcher 
observes a difference between 2 means, and the test of this 
difference results in a P value <0.05. Provided assump-
tions hold, this means that there is a <5% chance that this 
mean difference would be observed if the null hypothesis 
were actually true. In other words, by setting this thresh-
old to 5%, researchers accept a 5% chance that they will 
falsely conclude there is an effect. Conversely, type 2 error 
(β) refers to failing to reject the null when there is actually 
an effect (false negative; Table 1). The commonly used α 
level of 0.05 was first introduced by R. A. Fisher; how-
ever, its utility remains frequently questioned (discussed 
in later sections).2

Second, we ask, when are multiple comparison correc-
tions needed? There is ongoing debate as to when and how 
to implement corrections for multiple comparisons.3–5 The 
classical perspective posits that for any instance of repeated 

testing within a sample, the α (e.g., 0.05) or the P values 
themselves must be adjusted to reduce the probability of 
type 1 error.4 However, critics of multiple comparison cor-
rections argue that there is no consensus on what is con-
sidered a comparison. For example, does this include all 
performed tests (even exploratory) or just the ones that are 
published? Would corrections apply to different articles 
published from the same sample? Would a researcher who 
has worked on the same sample for many years need to 
report some type of “careerwise” error?4 Others view mul-
tiple comparison corrections as unnecessary, with multiple 
comparison concerns being adequately addressed through 
different modeling approaches.6 Although this review is 
more focused on how to correct for multiple comparisons 
as opposed to this debate, it is still important to acknowl-
edge the concerns of researchers about the best way to 
report the most accurate results possible. Despite these 
differing opinions, some agreement has been achieved. 
First, researchers should strive to reduce the number of 
comparisons via thoughtful selection of end points, iden-
tification of primary versus secondary end points, and cre-
ation of global/summary measures, as appropriate.4 Next, 
researchers should be transparent in both the consequences 
of type 1 and type 2 error with regard to their sample and 
the rationale for their approach (or absence of) for multiple 
comparison corrections.4,7 Finally, multiple comparison 
corrections should be strongly considered for confirmatory 
analyses but are less needed for exploratory analyses (e.g., 
hypothesis-generating analyses).3,4

Many commonly used controls for type 1 error specifi-
cally aim to control for family-wise error (FWER), which is 
the probability of at least 1 false positive occurring (equa-
tion below). For example, with a significance threshold of 
α = 0.05, the FWER for 10 tests would be 0.4 or 40% (Fig. 1). 
In other words, the chance for there being at least 1 false 
positive among 10 tests performed simultaneously is 40%.

Family-Wise Error Rate

FWER 1 1= – ( – )α n

n = number of tests performed, α = significance threshold 
(typically 0.05).

Modern clinical research commonly uses complex designs with multiple related outcomes, 
including repeated-measures designs. While multiple comparison corrections and effect size 
calculations are needed to more accurately assess an intervention’s significance and impact, 
understanding the limitations of these methods in the case of dependency and correlation is 
important. In this review, we outline methods for multiple comparison corrections and effect 
size calculations and considerations in cases of correlation and summarize relevant simulation 
studies to illustrate these concepts.   (Anesth Analg 2016;122:825–30)
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The most common and simplest control of the FWER 
is the Bonferroni correction.8 For this correction, the 
significance threshold is adjusted for the number of tests 
performed (Appendix 1). For example, if 10 tests are per-
formed, the adjusted significant threshold would be from 
0.05 to 0.005; thus, only tests with P < 0.005 would be con-
sidered statistically significant (i.e., null would be rejected).

However, the Bonferroni correction is also the most 
conservative and strict of the multiple testing correction 
approaches, and many researchers advocate alternatives 
under appropriate circumstances.9,10 One popular alternative 
to the Bonferroni correction is the sequential (step-down) 
Bonferroni developed by Holm (the traditional Bonferroni 
correction is considered a single-step approach).11 When 
using this step-down approach (also know as the Bonferroni-
Holm method), P values of each single test are placed in rank 
order based increasing P values (Appendix 1). The smallest 
P value is compared with the standard Bonferroni-adjusted 
α. If it is not statistically significant in relation to the adjusted 
threshold, no adjustments to α are made. If it is less than 
the threshold, the second smallest P value is then compared 
with a significance threshold in which the original α (e.g., 
0.05) is adjusted for the number of tests minus 1. This con-
tinues until no further P values are statistically significant 
according to the adjusted significance thresholds. This step-
down procedure is considered less conservative and can bet-
ter limit type 2 error compared with the standard Bonferroni 
correction; this method is commonly available in statistical 
software for users.9 Both the above approaches are com-
monly used as upward adjustments to the α, the metric to 
which generated P values from all tests are compared. This 

adjusted α can also be used to calculate corrected confidence 
intervals (CIs). Of note, multiple comparison approaches can 
also be used to correct the estimated P values from the test 
performed instead of the α. In this case, the adjusted P val-
ues are compared with the a priori α (e.g., 0.05).

Although the Bonferroni-Holm procedure demon-
strates increased power in comparison with the standard 
Bonferroni corrections; overall, controlling FWER is still 
a conservative approach to addressing the issue of type 1 
error. By using strict corrections for multiple comparisons, 
researchers run the risk of reducing their power to detect 
real, existing effects (i.e., type 2 errors or false negatives, 
Table  1). Clinical journals have been advising researchers 
to move away from strict correction for multiple testing 
because of these (and other) concerns.3,10,12 Alternatively, 
more powerful methods proposed include Bayesian meth-
ods, the use of likelihood ratios, and modified false discov-
ery rate (FDR) procedures.3,10,12

FDR control is considered a less conservative approach 
to address false positives in contrast to FWER control meth-
ods.10 FDR is the proportion of false positives among all 
rejected null hypotheses; specifically, FDR = number of false 
positives/(number of false positives + number of correct 
decisions to reject null) (Table 1). Benjamini and Hochberg13 
developed a straightforward approach to control for FDR. 
In this approach, P values are first ordered from smallest to 
largest, similar to the Bonferroni-Holm method. This P value 
is then compared with an adjusted threshold defined as the 
product of the maximum FDR threshold (typically 0.05) and 
the rank order of the P value divided by the number of tests.

Table  2 extends the example worked out by Glickman 
et al.10 to compare the Bonferroni, step-down Bonferroni-
Holm, and Benjamini and Hochberg FDR procedures. In 
this comparison, for the same set of tests, the Bonferroni and 
Bonferroni-Holm methods would reject the null hypothe-
sis for 2 tests (i.e., the 2 tests were statistically significant), 
whereas the FDR method would reject the null hypotheses 
for 4 tests. Furthermore, in a simulation study comparing 
the approaches,14 all 3 procedures completely controlled 
the number of type 1 errors across 50 tests (α = 0.05). 
However, this simulation also modeled type 2 errors (false 
negatives), with the preset number of true alternatives to be  
n = 15. The FDR procedure resulted in fewer false negatives 
(n = 10) compared with Bonferroni and Bonferroni-Holm 
procedures (both n = 14). In other words, whereas the FDR 
correctly recognized 33% of true alternatives, the 2 FWER 
approaches only recognized 7% of true alternatives.

MULTIPLE COMPARISONS FOR CORRELATED 
OUTCOMES
One concern with the FWER and FDR methods is that there 
is an assumption that the tests are independent. These pro-
cedures may yield overly conservative adjustments in the 
case of dependence.15 Modern clinical trials are increasingly 
more complex and often have multiple related outcomes; 
thus, procedures that take dependency into account should 
be considered.16,17

Resampling approaches, such as bootstrap methods, 
have been utilized to account for correlation in multiple 
comparisons.15,18–21 Briefly, bootstrapping is used to estimate 

Figure 1. Probability (reported as a proportion) of family-wise error 
as a function of the number of tests performed, with family-wise 
error rate increasing with the addition of more comparisons.

Table 1.   Type 1 and 2 Errors in Relation to 
Hypothesis Testing

Decision

Truth of null hypothesis

Null hypothesis true Null hypothesis false
Reject null Type 1 error (α)  

False positives
Correct decision

Fail to reject null Correct decision Type 2 error (β)  
False negatives
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the population distribution or a given test statistic or metric 
by using information from multiple random samples taken 
from the real sample data set.22–24 Bootstrapping approaches 
have been incorporated into single-step and step-down 
FWER and FDR methods and implicitly account for the 
underlying correlational structure of data; overall, they 
should yield less conservative P value adjustments (Westfall-
Young method).19,20 However, bootstrapping methods can be 
criticized because of their approximate nature.Westfall et al.19 
also outline a permutation method for P value adjustment 
that yields similar results to their bootstrapping approach. 
One drawback to using resampling-based techniques is that 
they can be computationally intensive.

Follow-up studies have shown that Benjamini and 
Hochberg FDR is still robust when tests are positively cor-
related.13 In cases where tests are negatively correlated or 
have a complex dependency structure, a modification to 
their original formula was developed.13 This approach is less 
computationally intensive than the resampling approaches. 
Appendix 2 describes how these (and other) adjustments 
can be conducted in SAS.

Furthermore, it is important to understand how multiple 
comparison adjustments pertain to CIs because the report-
ing of CIs, sometimes in lieu of P values, is becoming more 
widely accepted. The limits of CIs are set by a priori α val-
ues, with the confidence limit equaling 1 − α. The most com-
mon CI of 95% corresponds to the common α level of 0.05. 
Thus, CIs can be adjusted using the same methods above, 
which decrease the α level to control for type 1 error. This 
adjustment would result in wider CIs, for example, α = 0.01 
would correspond to 99% CIs.25,26

An example that highlights these potential issues arises 
in the recently published article from Murphy et al.27 They 

report a corrected threshold of 0.01 (Bonferroni correc-
tion), which implies that the correction was applied to a 
group of 5 tests; however, the number of tests performed, 
and which tests were considered for this correction, was 
not clearly specified. Furthermore, due to the repeated 
nature of their study, the outcomes would most likely be 
correlated. Thus, a correction that considered correlations 
would have been more appropriate. This is important, 
considering the issue of balancing the correction of type 1 
error versus inflating type 2 error. Furthermore, as noted 
previously in this journal, as well as others, the probabil-
ity of reproducing results is as important as a significant 
result from a given individual study.28–30 However, P val-
ues need to be rather small before achieving a satisfactory 
level of reproducibility in similar populations (with this 
journal recommending a threshold of P < 0.0001).30 Thus, 
controlling for multiple comparisons is not only impor-
tant in interpreting the results of a single study but also 
in evaluating how well a given study’s results will predict 
future similar studies.

Overall, when correcting for multiple comparisons, a 
prudent approach would be for researchers to fully and 
clearly describe all testing performed in the study to justify 
the multiple comparison calculation used and to report all 
raw P values. If the authors believe that a flood of P values 
may exhaust readers or distract from central messages, an 
acceptable solution is to place the most important P values 
in the journal and then to place additional values in the jour-
nal’s supplemental digital content section available online.

Simulation Studies
Table 3 illustrates the overall difference in P value adjust-
ment between the common step-down Bonferroni with 
both step-down bootstrap and permutation approaches 
(Westfall-Young).19 As noted above, these resampling 
techniques implicitly consider correlations. Overall, the 
adjusted P values using either the bootstrap or the permu-
tation methods were lower than those from the step-down 
Bonferroni procedure.

Table 4 illustrates simulation results from Hutson15 that 
demonstrate differences in corrected P values from the 
Bonferroni method and their semiparametric bootstrap 
approach from a simulated data set with 4 correlated vari-
ables (p1, p2, p3, and p4). While the standard Bonferroni 

Table 2.   Comparisons Across Multiple Comparison Methods for 10 Tests

Test no.
Estimated  
P valuea

Bonferroni Bonferroni-Holm False discovery rate

Corrected  
thresholdb Decision

Corrected  
thresholdb Decision

Corrected  
thresholdb Decision

1 0.0001 0.005 Significant 0.005 Significant 0.005 Significant
2 0.0002 0.005 Significant 0.0056 Significant 0.01 Significant
3 0.01 0.005 Not significant 0.0063 Not significant 0.015 Significant
4 0.013 0.005 Not significant 0.0071 Not significant 0.02 Significant
5 0.03 0.005 Not significant 0.0083 Not significant 0.025 Not significant
6 0.04 0.005 Not significant 0.01 Not significant 0.03 Not significant
7 0.07 0.005 Not significant 0.0125 Not significant 0.035 Not significant
8 0.15 0.005 Not significant 0.0167 Not significant 0.04 Not significant
9 0.26 0.005 Not significant 0.025 Not significant 0.045 Not significant
10 0.52 0.005 Not significant 0.05 Not significant 0.05 Not significant
aEstimated P value refers to P value produced by 1 of the multiple tests performed during analyses for a given study.
bCorrected threshold refers to the multiple comparison corrected α level, the metric to which P values are compared.

Table 3.   Simulation (n = 1,000,000) Comparing 
Westfall-Young Bootstrap and Permutation P Value 
Adjustments to Those from Step-Down Bonferroni

Raw  
P value

Step-down  
Bonferroni-corrected  

P value

Bootstrap- 
corrected  
P value

Permutation- 
corrected  
P value

0.098 0.0982 0.0985 0.1007
0.0262 0.0525 0.0509 0.0521
0.0067 0.02 0.0187 0.0185

Westfall et al. (2011).19
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formula corrects the study α (to which P values are com-
pared) by dividing it by a correction factor equal to the 
number of tests (in this example n = 4, correct α = 0.05/4 
= 0.0125), the approach by Hutson calculates a correction 
factor via a bootstrapping approach. Even in the case of no 
correlation, the bootstrap method is slightly less conserva-
tive than the Bonferroni method. Overall, as the correlation 
within the sample increases (or are negative), the bootstrap 
method becomes less conservative while maintaining a 
FWER near 0.05.

LIMITATIONS OF SIGNIFICANCE TESTING
While appropriately correcting for multiple comparisons 
can reduce type 1 error, researchers, reviewers, and readers 
should be cautious to interpret a nonstatistically significant 
finding as “no effect” because these 2 concepts can differ. 
As mentioned above, in null hypothesis testing, we set out 
to reject the null in support of an alternative hypothesis. 

However, if a test fails to reach statistical significance (i.e., a 
researcher fails to reject the null), it cannot be said that there 
is no effect or difference (i.e., the difference or effect equals 
zero); it only means that there was a greater probability 
that the difference that was observed would be observed 
by chance. In other words, a lack of statistical significance 
does not necessarily mean a lack of clinical or practical sig-
nificance. Furthermore, significance testing, thus the abil-
ity or power to reject the null, is dependent on sample size 
and does not give any indication of the relevance of a find-
ing.31,32 Due to these limitations, there is increasing use of 
effect size metrics that can better quantify the magnitude of 
difference, independent of significance testing.

APPROACHES TO CALCULATING EFFECT SIZES
Effect sizes provide information regarding the magnitude 
and direction of an observed effect. They are also vital to 
meta-analyses, providing a standardized way to compare 
results across studies. One of the most commonly used 
approaches when comparing 2 groups is calculating stan-
dard mean difference, and one popular standard mean 
difference approach is the Cohen’s d. The Cohen’s d mathe-
matically translates group differences in terms of standard 
deviations. For example, a Cohen’s d = 0.5 means 2 groups 
differed by a half of a standard deviation. While Cohen 
outlined heuristic cutoffs for interpreting Cohen’s d,  
with d = 0.2 (small), d = 0.5 (medium), and d = 0.8 (large), 
Cohen33 cautioned that this interpretation may not be 
applicable for all contexts and studies. Although Cohen’s d  
is useful in estimating the effect size of differences between 
2 group means, there are other metrics that can be used for 
other types of comparisons (e.g., odds ratio, r, numbers 
needed to treat). Appendix 3 lists online resources where 
these and other effect size metrics can be easily calculated, 
as well as be converted to other metrics. Understanding 
these effects sizes is also important concerning the over-
all study design. Many programs that calculate power for 
studies rely on effect size metrics for their computations.

As in the aforementioned considerations with multi-
ple comparison corrections, it is important to account for 
dependency in calculating effect sizes; this is especially 
important because of their use in meta-analyses. Many com-
mon effect size calculations can be modified to account for 
the correlational structure of the data. A failure to account 

Table 4.   Simulation Results for Semiparametric Bootstrap Approach (n = 1000) Compared with Bonferroni, 
Across Multiple Correlation Structures (for 4 Variables)
Pairwise correlationsa

ρ 12 ρ 13 ρ 14 ρ 23 ρ 24 ρ 34
Resampling-based  

correct factor
Bootstrap- 

corrected αb
Bonferroni- 

corrected αb
Bootstrap  

FWER
0 0 0 0 0 0 3.74 0.0134 0.0125 0.046
0.3 0.3 0.3 0.3 0.3 0.3 3.56 0.0140 0.0125 0.049
0.6 0.6 0.6 0.6 0.6 0.6 3.01 0.0166 0.0125 0.055
0.9 0.9 0.9 0.9 0.9 0.9 1.98 0.0253 0.0125 0.05
0.3 0.5 0.7 0.3 0.5 0.7 3.15 0.0159 0.0125 0.045

−0.5 −0.5 −0.5 −0.5 −0.5 −0.5 2.54 0.0197 0.0125 0.059
0.5 0.5 0.5 0.5 0.5 0.5 3.24 0.0154 0.0125 0.05

Reproduced from Hutson (2004).15

FWER = Family-wiser error rate.
aAll possible pairwise Pearson correlations (ρ) for each possible set of 2 variables among a 4-variable sample.
bCorrected α threshold is the metric to which P values are compared.

Table 5.   Actual Versus Overestimated Effects Sizes 
Based on Correlation Between Measures
Actual  
effect size  
(Cohen’s d) ra = 0 r = 0.2 r = 0.4 r = 0.6 r = 0.8
0.3 0.3 0.34 0.39 0.47 0.67
0.6 0.6 0.67 0.77 0.95 1.34
0.9 0.9 1.01 1.16 1.42 2.01
1.2 1.2 1.34 1.55 1.9 2.68

Abbreviated reproduction from Dunlap et al. (1996).34

aAbsolute Pearson correlation.

Table 6.   Simulation (n = 10,000) Comparing 
Uncorrected and Corrected Cohen’s d Effect Sizes 
Across Difference Correlation Where the Actual 
Effect Size Is 1.0
Correlationa  
(n = 20)

Uncorrected  
Cohen’s d30

Corrected  
Cohen’s d31

0 1.024 1.023
0.1 1.023 1.021
0.3 1.023 1.017
0.5 1.029 1.018
0.7 1.027 1.011
0.9 1.036 1.012

Abbreviated reproduction from Dunlap et al. (1996).34

aAbsolute Pearson’s correlation.
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for correlations can inflate estimates, thus leading to overes-
timation of a treatment’s clinical importance.34–36

Simulation Studies
Table 5 depicts the bias induced by correlations to the Cohen’s 
d effect size calculation.34 As correlations increase, the effect 
sizes become increasing overinflated. For very high corre-
lations (0.8), calculated effect sizes were nearly double the 
actual effect. These strong correlations are not uncommon 
in clinical research, especially in repeated-measures studies.

Table 6 summarizes a simulation study (n = 10000) com-
paring the effect sizes from the standard Cohen’s d formula 
and Cohen’s d corrected for correlation.34 In this simulation, 
the actual effect size is 1.0. As the correlation increases in 
magnitude, the uncorrected effect size becomes more over-
inflated, while the corrected effect size becomes even more 
accurate.

CONCLUSIONS
Understanding the accuracy and clinical importance of 
results is an important issue in clinical research. However, 
as we note in this review, researchers, reviewers, and read-
ers should be mindful of the limitations of significance test-
ing and how these limitations influence the way results are 
reported and interpreted. The most important advice would 
be to make thoughtful study design choices a priori. This 
includes determining the number of planned comparisons, 
what the primary (versus secondary) end points are and 
finding the clinically relevant, minimally important dif-
ferences in your outcomes. These a priori decisions will 
guide the data analysis and interpretation, as well as limit 
the potential problems that come with significance test-
ing. Furthermore, it is vital that clinical researchers under-
stand the dependency structure of their data due to the bias 
induced by correlation on both corrections for multiple 
comparisons and effect sizes. Overall, and most impor-
tantly, it is essential that researchers use the most appropri-
ate and sound statistical tools possible to extract meaningful 
and accurate information from available data so that each 
manuscript has its maximal clinical impact on care for our 
patients. E
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APPENDIX 1
Formula for Common Multiple Comparison 
Corrections
Bonferroni correction:

Corrected threshold = α / n

n = number of tests performed, α = significance threshold 
(typically 0.05).

Sequential Bonferroni-Holm correction:
First-order P values, with first (1st) value being the smallest 
P value

Corrected threshold 1st value( ) /P n= α

Corrected threshold 2nd value 1( ) /( )P n= −α

Corrected threshold 3rd value 2( ) /( )P n= −α

Continue until P values are greater than calculated threshold.
n = number of tests performed, α = significance threshold 
(typically 0.05)

Benjamin and Hochberg False Discover Rate correction:
First-order P values, with first (1st) value being the smallest 
P value

Corrected threshold 1st value maximumFDR 1( ) ( / )P n= ×

Corrected threshold 2nd value maximumFDR 2( ) ( / )P n= ×

Corrected threshold 3rd value maximumFDR 3( ) ( / )P n= ×

Continue until P values are greater than calculated threshold.
n = number of tests performed, maximum FDR is analogous 
to α (typically 0.05).

APPENDIX 2
SAS code for the adjustment of P values (using P values 
from Table 2). These adjustments include approaches that 
assume independence and ones that account for depen-
dence. See SAS® for detailed explanations.
data mc;
input Test$ Raw_P @@;
datalines;
test01 0.0001 test02 0.0002 test03 0.01
test04 0.013 test05 0.03 test06 0.04
test07 0.07 test08 0.15 test09 0.26
test10 0.52;
proc multtest inpvalues=mc Bonferroni holm fdr dependentfdr;
run;
Documentation: http://support.sas.com/documentation/cdl/ 
en/statug/63347/HTML/default/viewer.htm#multtest_
toc.htm

APPENDIX 3
Some Resources for Effect Size Calculations 
and Interpretations
Articles:
Cumming, Geoff. “The New Statistics Why and How.” 
Psychological Science 25, no. 1 (2014): 7–29.
Kraemer, Helena Chmura, and David J. Kupfer. “Size of 
treatment effects and their importance to clinical research 
and practice.” Biological psychiatry 59, no. 11 (2006): 990–996.

http://support.sas.com/documentation/cdl/en/statug/63347/HTML/default/viewer.htm # multtest_toc.htm
http://support.sas.com/documentation/cdl/en/statug/63347/HTML/default/viewer.htm # multtest_toc.htm
http://support.sas.com/documentation/cdl/en/statug/63347/HTML/default/viewer.htm # multtest_toc.htm
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Durlak, Joseph A. “How to select, calculate, and interpret 
effect sizes.” Journal of pediatric psychology (2009): jsp004.
Websites:
Website of Dr. Lee Beckers, from University of Colorado, 
Colorado Springs: http://www.uccs.edu/~lbecker/
R Psychologist website by Kristoffer Magnusson:
http://rpsychologist.com/d3/cohend/ 
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